40,691 research outputs found

    Discrimination of Individual Tigers (\u3cem\u3ePanthera tigris\u3c/em\u3e) from Long Distance Roars

    Get PDF
    This paper investigates the extent of tiger (Panthera tigris) vocal individuality through both qualitative and quantitative approaches using long distance roars from six individual tigers at Omaha\u27s Henry Doorly Zoo in Omaha, NE. The framework for comparison across individuals includes statistical and discriminant function analysis across whole vocalization measures and statistical pattern classification using a hidden Markov model (HMM) with frame-based spectral features comprised of Greenwood frequency cepstral coefficients. Individual discrimination accuracy is evaluated as a function of spectral model complexity, represented by the number of mixtures in the underlying Gaussian mixture model (GMM), and temporal model complexity, represented by the number of sequential states in the HMM. Results indicate that the temporal pattern of the vocalization is the most significant factor in accurate discrimination. Overall baseline discrimination accuracy for this data set is about 70% using high level features without complex spectral or temporal models. Accuracy increases to about 80% when more complex spectral models (multiple mixture GMMs) are incorporated, and increases to a final accuracy of 90% when more detailed temporal models (10-state HMMs) are used. Classification accuracy is stable across a relatively wide range of configurations in terms of spectral and temporal model resolution

    Rate of Convergence in Nonlinear Hartree Dynamics with Factorized Initial Data

    Full text link
    The mean field dynamics of an NN-particle weekly interacting Boson system can be described by the nonlinear Hartree equation. In this paper, we present estimates on the 1/N rate of convergence of many-body Schr\"{o}dinger dynamics to the one-body nonlinear Hartree dynamics with factorized initial data with two-body interaction potential VV in L3(R3)+L∞(R3)L^3 (\mathbb{R}^3)+ L^{\infty} (\mathbb{R}^3).Comment: AMS LaTex, 21 page

    Quark Orbital-Angular-Momentum Distribution in the Nucleon

    Get PDF
    We introduce gauge-invariant quark and gluon angular momentum distributions after making a generalization of the angular momentum density operators. From the quark angular momentum distribution, we define the gauge-invariant and leading-twist quark {\it orbital} angular momentum distribution Lq(x)L_q(x). The latter can be extracted from data on the polarized and unpolarized quark distributions and the off-forward distribution E(x)E(x) in the forward limit. We comment upon the evolution equations obeyed by this as well as other orbital distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad

    Multiwavelength observations of a partially eruptive filament on 2011 September 8

    Full text link
    In this paper, we report our multiwavelength observations of a partial filament eruption event in NOAA active region 11283 on 2011 September 8. A magnetic null point and the corresponding spine and separatrix surface are found in the active region. Beneath the null point, a sheared arcade supports the filament along the highly complex and fragmented polarity inversion line. After being activated, the sigmoidal filament erupted and split into two parts. The major part rose at the speeds of 90−-150 km s−1^{-1} before reaching the maximum apparent height of ∌\sim115 Mm. Afterwards, it returned to the solar surface in a bumpy way at the speeds of 20−-80 km s−1^{-1}. The rising and falling motions were clearly observed in the extreme-ultravoilet (EUV), UV, and Hα\alpha wavelengths. The failed eruption of the main part was associated with an M6.7 flare with a single hard X-ray source. The runaway part of the filament, however, separated from and rotated around the major part for ∌\sim1 turn at the eastern leg before escaping from the corona, probably along large-scale open magnetic field lines. The ejection of the runaway part resulted in a very faint coronal mass ejection (CME) that propagated at an apparent speed of 214 km s−1^{-1} in the outer corona. The filament eruption also triggered transverse kink-mode oscillation of the adjacent coronal loops in the same AR. The amplitude and period of the oscillation were 1.6 Mm and 225 s. Our results are important for understanding the mechanisms of partial filament eruptions and provide new constraints to theoretical models. The multiwavelength observations also shed light on space weather prediction.Comment: 46 pages, 17 figures, 1 table, accepted for publication in Ap

    Genetic diversity and population structure of Chinese honeybees (Apis cerana) under microsatellite markers

    Get PDF
    Using 21 microsatellite markers and PCR method, the polymorphisms of 20 Apis cerana honeybee populations across China was investigated and the genetic structure and diversity of the populations were explored. The results showed that 507 alleles (mean 24.14 per locus, ranging from 13 to 45) were observed in 842 honeybees. Wuding bee had the highest level of  heterozygosity (0.695), and the lowest estimate was 0.207 for Changbai bee. The global heterozygote deficit across all populations (Fit) amounted to 0.776. About 42.3% of the total genetic variability originated from differences between breeds, with all loci contributing significantly to the differentiation. An unrooted consensus tree using the Neighbour-Joining method and pair-wise distances showed that 6 populations from Eastern China clustered together. The structure analysis indicated that the 6 populations were separated first. These findings demonstrated that the 6 honeybee populations had close genetic relationships.Key words: Apis cerana, microsatellite, polymorphism, genetic structure

    Off-Forward Parton Distributions in 1+1 Dimensional QCD

    Full text link
    We use two-dimensional QCD as a toy laboratory to study off-forward parton distributions (OFPDs) in a covariant field theory. Exact expressions (to leading order in 1/NC1/N_C) are presented for OFPDs in this model and are evaluated for some specific numerical examples. Special emphasis is put on comparing the x>ζx>\zeta and x<ζx<\zeta regimes as well as on analyzing the implications for the light-cone description of form factors.Comment: Revtex, 6 pages, 4 figure

    From Ground States to Local Hamiltonians

    Full text link
    Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interested in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space VV to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on VV is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have VV satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.Comment: 11 pages, 2 figures, to be published in PR

    Exciton Valley Dynamics probed by Kerr Rotation in WSe2 Monolayers

    Full text link
    We have experimentally studied the pump-probe Kerr rotation dynamics in WSe2_2 monolayers. This yields a direct measurement of the exciton valley depolarization time τv\tau_v. At T=4K, we find τv≈6\tau_v\approx 6ps, a fast relaxation time resulting from the strong electron-hole Coulomb exchange interaction in bright excitons. The exciton valley depolarization time decreases significantly when the lattice temperature increases with τv\tau_v being as short as 1.5ps at 125K. The temperature dependence is well explained by the developed theory taking into account the exchange interaction and a fast exciton scattering time on short-range potentials.Comment: 5 pages, 3 figure
    • 

    corecore